

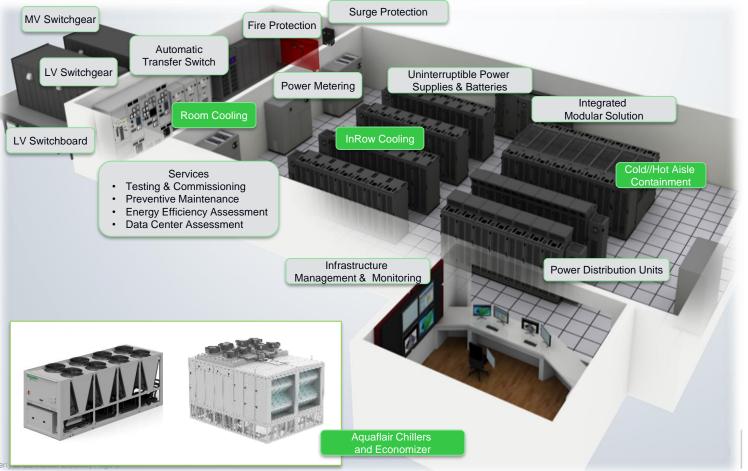
Efficient Cooling Technologies for the Critical Environment

Confidential Property of Schneider Electric | Page 1

Efficient Cooling Technologies for the Critical Environment

1

Cooling Systems Technology


Efficient Cooling Systems

3 Cooling Systems Best Practice

Cooling Systems Technology

Schneider Belectric

Schneider Electric Complete Cooling Solutions (One Stop)

Room

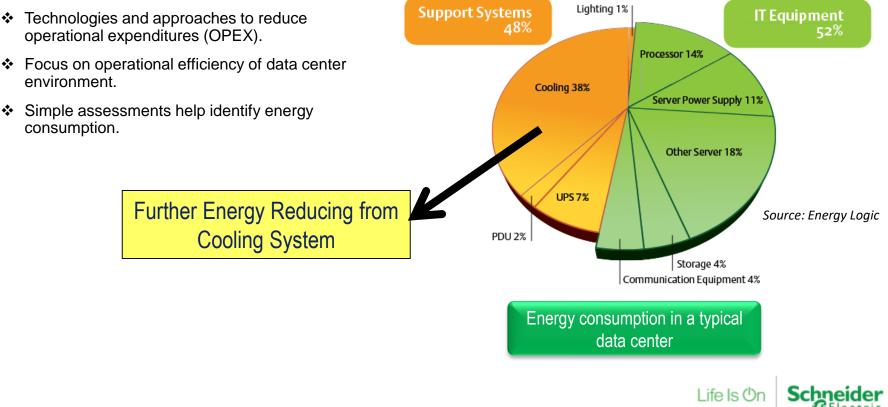
- Amico
- Leonardo
- Leonardo Max
- Wall-mounted
- Monoblock
- Unisplit
- InRoom SC
- Room Air Distribution

Confidential Property of Schneider Electric | Page 4

Row

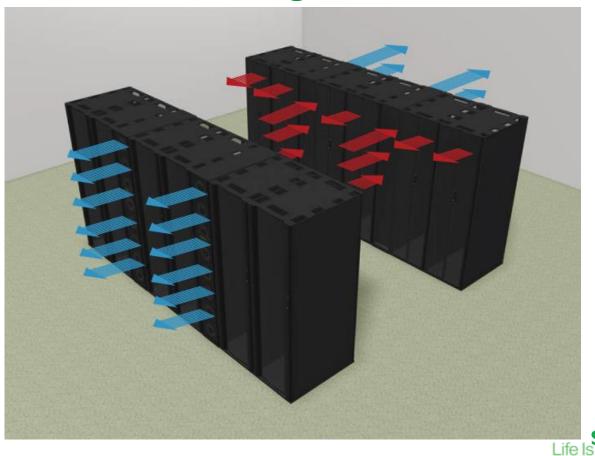
- Inrow SC model
- InRow Direct Expansion
- InRow Chilled Water
- Thermal Containment

Rack

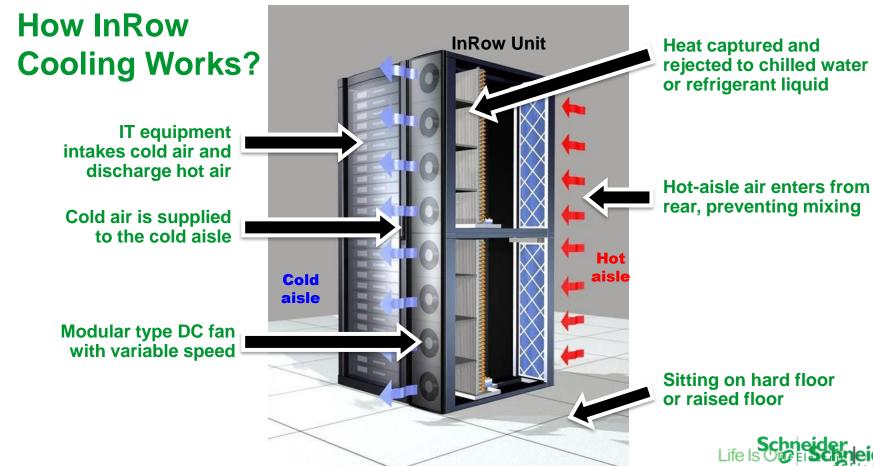

- Rack Air Distribution
- InRack direct expansion
- Read Door Heat Exchanger

- Access Flooring
- Technical Chillers
- Free Cooling Chillers and Economizers
- Ecoflair®
- Heat Rejections

Energy Efficiency, Lower Operating Costs

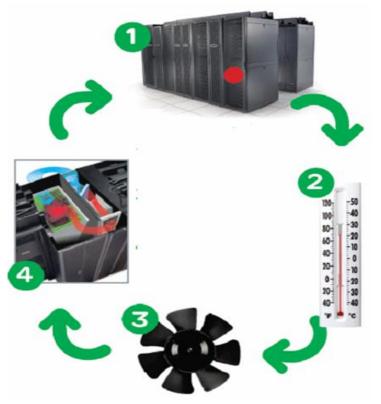


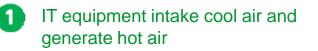
Data Center Trends



Life Is Or

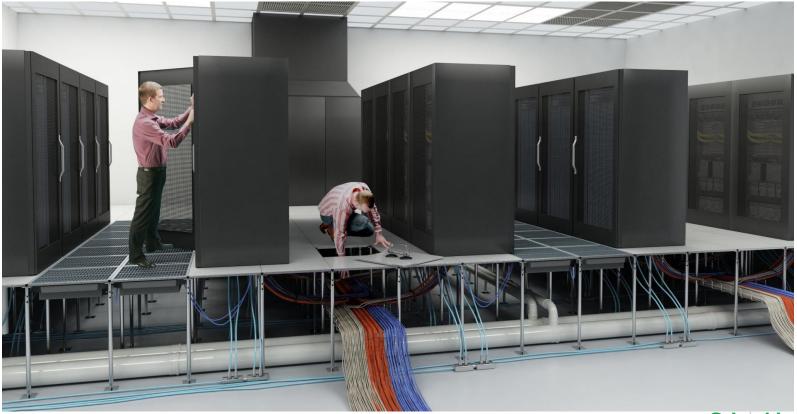
InRow Cooling Architecture



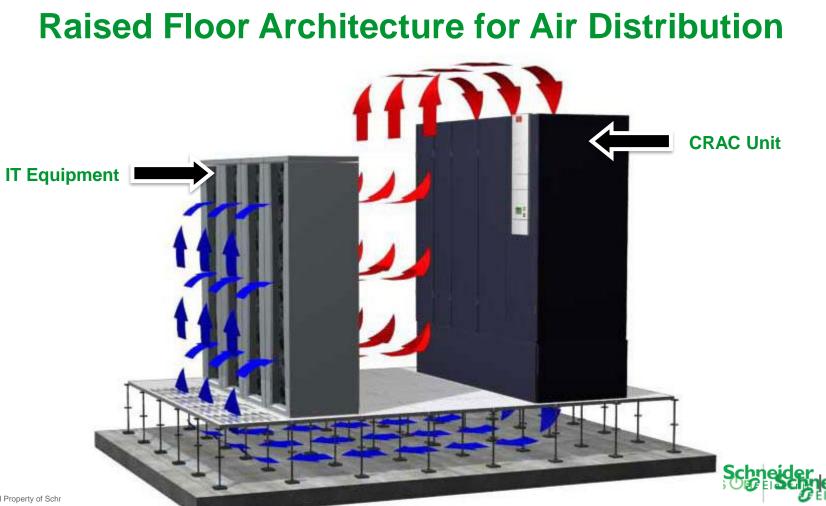

Sc

Intelligent Control = Predictable Cooling

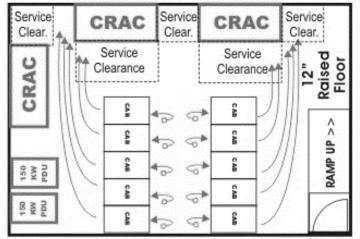
Active Response Controls increase availability by actively responding to thermal changes


2 InRow temperature probes sense changes and send signal to controller

3 Controller adjusts cooling capacity to balance with the heat load


Active Response Controls ensures IT equipment is kept at the proper temperature

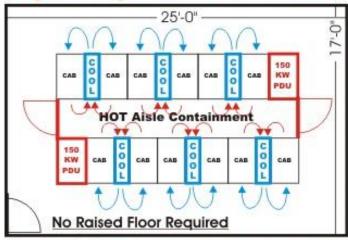
Raised Floor Architecture for Air Distribution



CRAC

Traditional Cooling Technology Cool Air From Perforated Floor Tiles

Power=150KW 100% Redundant (2N) Cooling=80KW (N+1) 3 x 40KW


Payload Space=10 Cabinets=420U Power per Cab=15.0KW

Cooling per Cabinet Limited to 5KW* Floorspace=17' x 25"=425 Sq. Ft.

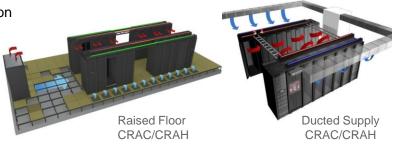
vs InRow

IN-ROW Cooling Technology

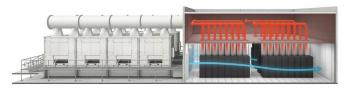
High Density Hot-Aisle Containment

Power=150KW 100% Redundant (2N) Cooling=150KW (N+1) 6 x 30KW

Payload Space=12 Cabinets=504U Power & Cooling per Cab=12.5KW Floorspace=17' x 25"=425 Sq. Ft. No Raised Floor Required


Schneic

_ife Is On


Room Cooling Architecture

Flexible and efficient cooling of network/server/telecom rooms and data centers

- Flexibility
 - Room level control and air distribution
 - Humidity Control
 - Lighting/People
 - Racked and Non-racked IT loads
 - Raised floor and Ducted

- Efficiency
 - EC Fan Technology to reduce fan power
 - Large Coil area to maximize capacity and Economizer Hours
 - Air Economizer to minimize mechanical cooling

Ducted Return Air Economizer

Efficient Cooling Systems

2011 ASHRAE Thermal Guidelines

(a)	Equipment Environmental Specifications								
Classes (a	Product Operations (b)(c)					Product Power Off (c) (d)			
	Dry-Bulb Temperature (°C) (e) (g)	Humidity Range, non-Condensing (h) (i)	Maximum Dew Point (°C)	Maximum Elevation (m)	Maximum Rate of Change(°C/hr) (f)	Dry-Bulb Temperature (°C)	Relative Humidity (%)	Maximum Dew Point (°C)	
Recommended (Applies to all A classes; individual data centers can choose to expand this range based upon the									
analysis described in this document)									
A1		5.5°C DP to							
to	18 to 27	60% RH and							
A4		15ºC DP							
Atlowable									
A1	15 to 32	20% to 80% RH	17	3050	5/20	5 to 45	8 to 80	27	
A2	10 to 35	20% to 80% RH	21	3050	5/20	5 to 45	8 to 80	27	
A 3	5 to 40	-12°C DP & 8% RH to 85% RH	24	3050	5/20	5 to 45	8 to 85	27	
A4	5 to 45	-12°C DP & 8% RH to 90% RH	24	3050	5/20	5 to 45	8 to 90	27	
В	5 to 35	8% RH to 80% RH	28	3050	NA	5 to 45	8 to 80	29	
С	5 to 40	8% RH to 80% RH	28	3050	NA	5 to 45	8 to 80	29	

From ASHRAE White Paper

Recommended Inlet Air Temperature Entering Datacom Equipment is 18 to 27°C

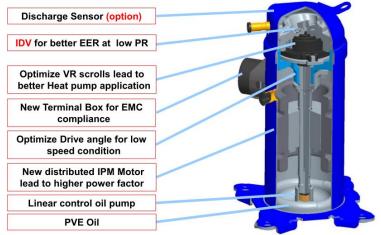
Life Is Or

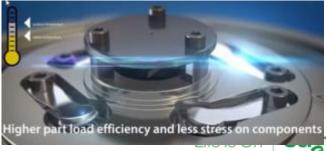
Radical EC Fan

Main benefits

Latest Generation of Radical Brushless Electronically Commutated fans give great benefits in terms of:

- Very high reliability (brushless)
- High performance with low noise, thanks to a particular shape of this last generation impeller
- New Impeller design improve the aeraulic of the fan maximizing the efficiency and reducing power consumption
- Continuous fan speed regulation provided by the BMS
- Service oriented designed to provide easier serviceability with a quick-removability kit

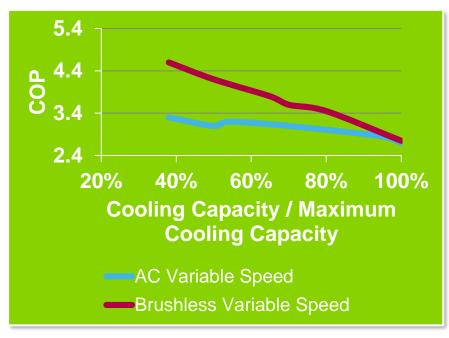


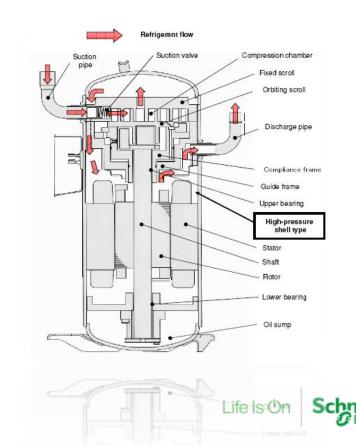

Latest Generation Brushless Compressors

Main benefits of Brushless Compressors

Latest Generation of Brushless compressors have great benefits in terms of:

- Very high reliability
- High performance with high efficiency at partial load
- New IDV valve to improve efficiency at partial load
- Enhanced Envelope suitable for high temperature application on 1922 and 2022 models
- Enhanced Envelope suitable for high temperature application on all other models on fix speed section

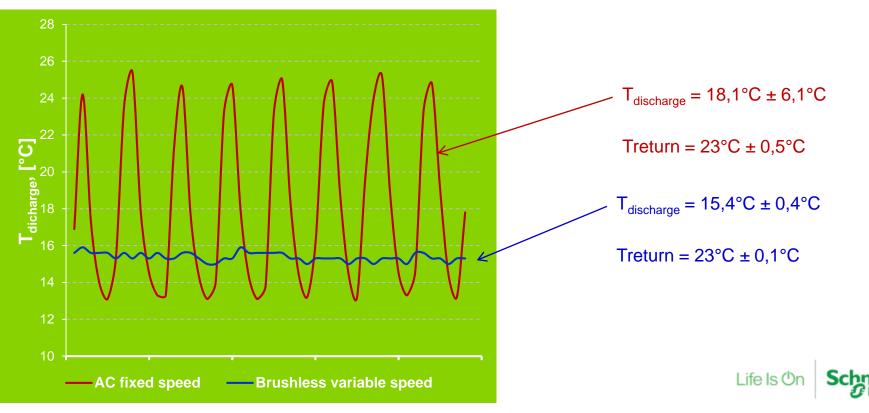




Brushless Motor Compressors Benefit

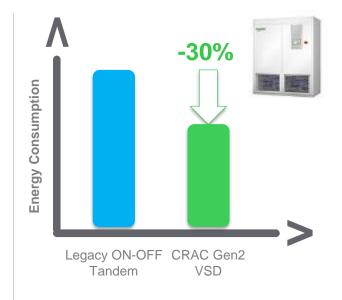
Increased energy efficiency at partial loads

thanks to Brushless compressors.



Efficient

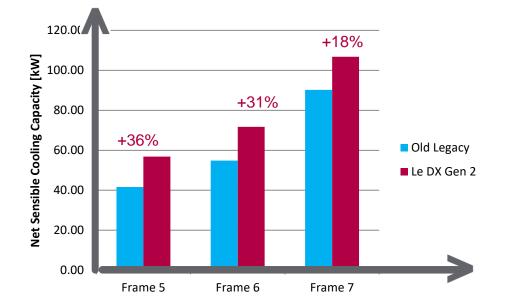
Discharge Temperature Control


High precision in temperature regulation

VSD DX Systems – CAPEX & OPEX Reduction

Impact on units

- CRAC units with VSD Brushless scroll compressors reduce yearly energy consumption of 30% compared to ON-OFF Tandem technology.
- The inverter technology on scroll compressor provide benefits also in terms of current absorption, reducing the electrical infrastructure cost.



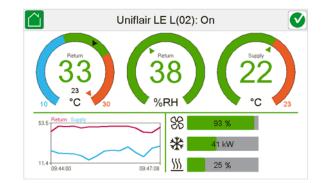
Efficient

Capacity Maximization (Fan In The Box)

Comparison between new range (LDAV and IDAV) and old range (TDAV)

 Cooling capacity maximization: up to +36% in the same footprint for fixed speed and VSD.

Legacy Model


Nom. Cond. 45°C condensation, return air 24°C

Integrated SE IT-Touch screen

Main fetaures

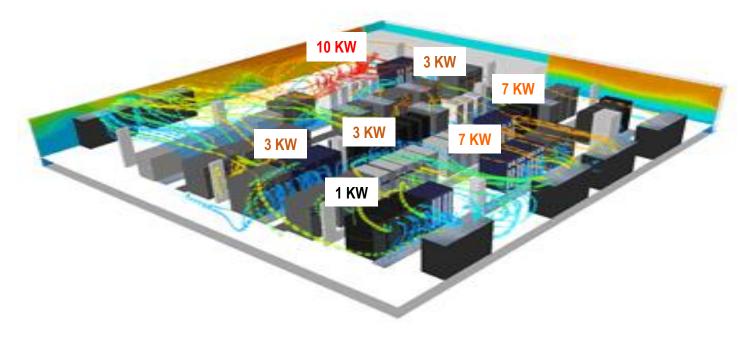
- Integrated Touchscreen in the units with main parameters easy visulaization
- Integrated TCP/IP and USB card for firmware upgrade
- Integrated Management for all the working parameters
- Integrated Unloading logic on VSD units to avoid high pressure trips events
- Full management of the Condenser status including single fan status

commutation (ATS) for complete redundancy without single point of failure as per TIER recommendations

Double Power Supply

Single and double power supply

• **Double** power supply with automatic


Cooling Systems Best Practice

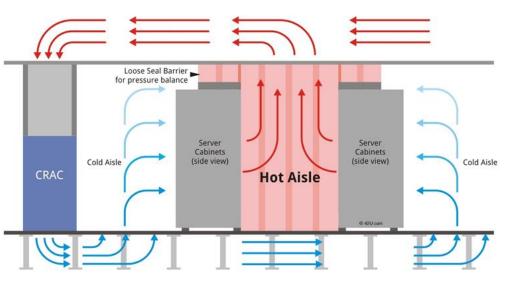
Old Method of Cooling for today high density poses problem!

Problems!! - • Hot air re-circulating back to servers.

- Insufficient air distribution.
- Mixing of hot air with cold causes energy wastage

NETSHELTER ECOAISLE THERMAL CONTAINMENT SYSTEMS

EcoAisle



THERMAL CONTAINMENT SYSTEMS

- In today's data centers, traditional cooling approaches involve complex air distribution systems that tend to be unpredictable and leave many customers guessing where the cold air goes.
- The EcoAisle minimizes the hot and cold air mixing within the IT environment.
- increases efficiency and provides a predictable cooling architecture.

Implementing Thermal Containment Systems in Data Centers

Perimeter Cooling

ow Based Cooling Life Is On Schneider

Pros and cons of the six air containment methods

Contai	nment method	Pros	Cons	
Cold air	Cold aisle containment system	Easy and cost effective for raised floor applications; cooling capacity can be shared with other racks within two rows; fastest deployment time of all containment types	Lower number of free cooling hours; creates uncomfortable working environment in uncontained areas	
containment	Row-cooled, cold aisle containment system	In-row cooling units increase cooling capacity of existing CACS environment with perimeter cooling units; prepackaged solution can save deployment time	Higher first capital cost; need to move IT racks to insert row-based cooling units within row	
	Ducted rack	Easy to deploy for scattered HD racks; Don't require a hot aisle / cold aisle arrangement; can be deployed piece by piece to reduce upfront capital cost; offers higher number of free cooling hours	May cause pressure imbalance inside of drop ceiling or between nearby racks; increased labor time; longer deployment time for each rack	
	Ducted, hot aisle containment system	Creates comfortable work environment in uncontained areas; cooling capacity can be shared with other racks within two rows; offers higher number of free cooling hours	High temperature in the hot aisle may create uncomfortable work environment in contained area, longer deployment time for each rack	
Hot air containment	Row-cooled, hot aisle containment system	Low-cost option for data centers with existing row-based cooling. Thermally neutral to the existing room-based cooling system; cooling capacity can be shared with other racks within two rows; prepackaged solution can save deployment time	In data centers with existing perimeter cooling units: Higher upfront capital cost; need to move IT racks to insert row-based cooling units within row. High temperature in hot aisle may create uncomfortable work environment in contained area	
	Rack air contain- ment system	Almost immune to the constraints of existing facility; easy to plan for any power density; isolated from the existing cooling system; attenuates noise	In data centers with existing perimeter cooling units, has the highest first cost because more cooling units are needed; cooling capacity can't be shared with other racks; containment will add the depth of rack which will consume more floor space	

Thank You

Confidential Property of Schneider Electric | Page 30