
Troubleshooting TCP/IP Networks with

Wireshark

Tajul Azhar bin Mohd Tajul Ariffin

who.am.i

• Lecturer, Polytechnic Mersing, Johor

• CTO, Cyber Range Academy

• Student – Ph.D – second semester on Information Security – focus

on Cyber Range and Incident Handling

• Speaker

– Sharkfest US ‘19

– Elastic Malaysia User Community

– Durian Conference ‘17

– Joomla! Day Malaysia 2016-2017

– Malaysia Open Source Conference (MOSC)

– AWS Cloud – AWS Educate

• Certified Security Application Programming (CSAP) – Global ACE

• Application Security Forensic – Ofisgate Academy

2

Objectives

• Top 10 reasons for network
performance complaints

• Place the analyzer properly for
traffic capture on a variety of
network types

• Capture packets on wired and
wireless networks

• Configure Wireshark for best
performance and non-intrusive
analysis

• Navigate through, split, and work
with large traffic files

• Use time values to identify
network performance problems

• Create statistical charts and
graphs to pinpoint performance
issues

• Filter out traffic for more efficient
troubleshooting and analysis

• Customize Wireshark coloring to
focus on network problems faster

• Use Wireshark's Expert System to
understand various traffic
problems

• Use the TCP/IP Resolution
Flowchart to identify possible
communication faults

• Analyze normal/abnormal Domain
Name System (DNS) traffic

• Analyze normal/abnormal Address
Resolution Protocol (ARP) traffic

• Analyze normal/abnormal Internet
Protocol v4 (IPv4) traffic

3

Session 1 - Introduction to Network Analysis and Wireshark

• TCP/IP Analysis Checklist

• Top Causes of

Performance Problems

• Get the Latest Version of

Wireshark

• Capturing Traffic

• Opening Trace Files

• Processing Packets

• The GT Interface

Overview

• Using Linked Panes

• The Icon Toolbar

• Master the Intelligent

Scrollbar

• The Changing Status Bar

• Right-Click Functionality

• General Analyst

Resources

4

Session 2 - Learn Capture Methods and Use Capture Filters

• Analyze Switched
Networks

• Walk-Through a Sample
SPAN Configuration

• Analyze Full-Duplex Links
with a Network TAP

• Analyze Wireless
Networks

• USB Capture

• Initial Analyzing
Placement

• Remote Capture
Techniques

• Available Capture
Interfaces

• Save Directly to Disk

• Capture File
Configurations

• Limit Your Capture with
Capture Filters

• Examine Key Capture
Filters

5

Session 3 - Customize for Efficiency: Configure Your Global Preferences

• First Step: Create a Troubleshooting Profile

• Customize the User Interface

• Add Custom Columns for the Packet List Pane

• Set Your Global Capture Preferences

• Define Name Resolution Preferences

• Configure Individual Protocol Preferences

6

Session 3 - Navigate Quickly and Focus Faster with Coloring Techniques

• Move Around Quickly: Navigation Techniques

• Find a Packet Based on Various Characteristics

• Build Permanent Coloring Rules

• Identify a Coloring Source

• Use the Intelligent Scrollbar with Custom Coloring Rules

• Apply Temporary Coloring

• Mark Packets of Interest

7

Session 4 - Spot Network and Application Issues with Time Values and Summaries

• Examine the Delta Time (End-of-Packet to End-of-Packet)

• Set a Time Reference

• Compare Timestamp Values

• Compare Timestamps of Filtered Traffic

• Enable and Use TCP Conversation Timestamps

• Compare TCP Conversation Timestamp Values

• Determine the Initial Round Trip Time (iRTT)

• Troubleshooting Example Using Time

• Analyze Delay Types

8

Session 5: Troubleshooting

• Effectively Use Command-
Line Tools

• TCP/IP Communications
and Resolutions Overview

• Analysing traffics
– DNS

– ARP

– IPv4

– ICMP

– UDP

– TCP

– HTTP

– TLS-Encrypted Traffic
(HTTPS)

– File Transfer Protocol (FTP)

• Graph Traffic
Characteristics
– Build Advanced IO Graphs

– Graph Round Trip Times

– Graph TCP Throughput

– Find Problems Using TCP
Time-Sequence Graphs

9

Let’s go: know your packet(s)

• PCAP or it didn’t happen

• Wireshark official website: https://www.wireshark.org

• In May of 2006, Gerald Combs (the original author of Ethereal) went

to work for CACE Technologies (best known for WinPcap).

Unfortunately, he had to leave the Ethereal trademarks behind.

10

https://www.wireshark.org/

Sharing platform

11

Digital Ocean Cloud Environment

• Use this code to get USD 100: https://m.do.co/c/141cb910b568

• A few testing and exercise(s) will use this infrastructure

12

https://m.do.co/c/141cb910b568

Recommended
Tapper by Wireshark

13

• Original press

release

• Source:

https://www.prweb.

com/releases/2006

/06/prweb396098.

htm

14

https://www.prweb.com/releases/2006/06/prweb396098.htm

Installation of wireshark

• Wireshark can be obtained from here:

https://www.wireshark.org/index.html#download

• Current stable release (as of today; 13 November 2019) : 3.0.6

• Old stable release: 2.6.12

• Development release: 3.1.0

15

https://www.wireshark.org/index.html#download

Packet Analysis with Wireshark

1. What is Wireshark?

2. How does it work?

3. A brief overview of the TCP/IP model

4. An introduction to packet analysis

5. Why use Wireshark?

6. Understanding the GUI of Wireshark

7. The first packet capture

16

Introduction to Wireshark

• Wireshark is one of the most advanced packet capturing software,

which makes the life of system/network administrators easy and

proves its usefulness among the groups of security evangelists.

• Wireshark is also called a protocol analyzer, which helps IT

professionals in debugging network-level problems.

• This tool can be of great use to optimize network performance.

• Wireshark runs around dissecting network-level packets and

showing packet details to concerned users as per their requirement.

• If you are one of those who deals with packet-level networking

everyday, then Wireshark is for you and can be used for multiple

troubleshooting purposes.

17

A brief overview of the TCP/IP model

• The TCP/IP model was originally known as the DoD model, and the

project was regulated by United States Department of Defense.

• The TCP/IP model takes care of every aspect of every packet's life

cycle, namely, how a packet is generated, how a single packet gets

attached with a required set of information (PDU), how a packet is

transmitted, how it comes to life, how it is routed through to

intermediary nodes to the destination, how it is integrated back with

other packets to get the whole information out, and so on.

18

The layers in the TCP/IP model

• The TCP/IP model comprises

four layers, as shown in the

following diagram.

• Each layer uses a different set

of protocols allocated to it.

• Every protocol has specific

designated roles, and all of

them are designed in such a

way that they comply with

industry standards.

Application Layer

Transport Layer

Internet Layer

Link Layer

19

Application Layer

The Application layer also keeps track of user web sessions, which

users are connected, and uses a set of protocols, which helps the

application layer interface to the other layers in the TCP/IP model.

Some popular protocols that we will cover in this book are as follows:

• The Hyper Text Transfer Protocol (HTTP)

• The File Transfer Protocol (FTP)

• The Simple Network Management Protocol (SNMP)

• The Simple Mail Transfer Protocol (SMTP)

20

Transport Layer
• The sole purpose of this layer is to create

sockets over which the two hosts can
communicate (you might already know
about the importance of network sockets)
which is essential to create an individual
connection between two devices.

• There can be more than one connection
between two hosts at the same instance.
IP addresses and port numbers together
make this possible. An IP address is
required when we talk about WAN-based
communication (in LAN-based
communication, the actual data transfer
happens over MAC addresses), and
these days, a single system can
communicate with more than one device
over multiple channels which is possible
with the help of port numbers. Apart from
the restricted range of port numbers,
every system is free to designate a
random port for their communication.

• There can be more than one connection
between two hosts at the same instance.
IP addresses and port numbers together
make this possible. An IP address is
required when we talk about WAN-based
communication (in LAN-based
communication, the actual data transfer
happens over MAC addresses), and
these days, a single system can
communicate with more than one device
over multiple channels which is possible
with the help of port numbers. Apart from
the restricted range of port numbers,
every system is free to designate a
random port for their communication.

21

..TCP vs UDP

TCP
This is a connection-oriented
protocol, often called a reliable
protocol. Here, firstly, a dedicated
channel is created between two hosts
and then data is transferred. Then, the
sender sends equally partitioned
chunks, over the dedicated channel,
and then, the receiver sends the
acknowledgement for every chunk
received. Most commonly, the sender
waits for a particular time after which it
sends the same chunk again for
assurance. For example, if you are
downloading something, TCP is the one
that takes care and makes sure that
every bit is transferred successfully.

UDP
This is a connection-less protocol and
is often termed an unreliable form of
communication. It is simple though
because there is no dedicated channel
created, and the sender is just
concerned with sending chunks of data
to the destination, whether it is received
or not. This form of communication
actually does not hamper the
communication quality; the sole
purpose of transferring the bits from a
sender to receiver is fulfilled. For
example, if you are playing a LAN-
based game, the loss of a few bytes is
not going to disrupt your gaming
experience, and as a result, the user
experience is not harmed.

22

Internet Layer

• concerned with the back and forth movement of data.

• The primary protocol that works is the IP (Internet Protocol)

protocol, and it is the most important protocol of this layer.

• The IP provides the routing functionality due to which a certain

packet can get to it's destination.

• Other protocols included in this layer are ICMP and IGMP.

23

Link Layer

• The last layer is the Link Layer (often termed as the Network

Interface Layer) that is close to the network hardware.

• There are no protocols specified in this layer by TCP/IP; however,

several protocols are implemented, such as Address Resolution

Protocol (ARP) and Point to Point (PPP).

• This layer is concerned with how a bit of information travels inside

the real wires.

• It establishes and terminates the connection and also converts

signals from analog to digital and vice versa.

• Devices such as bridges and switches operate in this layer.

24

Protocol Data Unit (PDU)

• The combination of an IP address and a MAC address for both the

client and server is the core of the communication process, where

the IP address is assigned to the device by the gateway or assigned

statically, and the MAC address comes from the Network Interface

Card (NIC), which should be present in every device that

communicates with other hosts.

• As data progresses from the Application layer to the Link Layer,

several bits of information are attached to the data bits in the form of

headers or footers, which allow different layers of the TCP/IP model

to coordinate with each other.

• The process of adding these extra bits is called data encapsulation,

and in this process, a Protocol data unit (PDU) is created at the

end of the networking model.

25

Data Encapsulation

• PDU consists of the information being sent along with the different protocol
information that gets attached as part of the header or footer.

• By the time PDU reaches the bottom-most layer, it is embedded with all the
required information required for the real transfer.

• Once it reaches the destination, the embedded header and footer PDU
elements are ripped off one by one as it passes through each and every
layer of the TCP/IP model as it progresses upward in the model.

• The figure above depicts the process of encapsulation

26

An introduction to packet analysis with Wireshark

• Packet analysis (also known as
packet sniffing or protocol
analyzing) is used to intercept and
capture live data as it travels over
the network (Ethernet or Wi-Fi) in
order to understand what is
happening in the network.

• Packet analysis is done by
protocol analyzers such as
Wireshark available on the
Internet.

• Some of these are free and some
are paid for commercial use.

• Numerous problems can happen
in today's world of networking; for
this, we need to be geared up all
the time with the latest set of tools
that can avail us of the ease of
troubleshooting in any situation.

• Each of these problems will start
from the packet level and can
gradually grow up to a high
network downtime.

• Even the best of protocols and
services running on a system can
go bad and behave maliciously.

• To get to the root of the problem,
we need to look into the packet
level to understand it better.

• If you need to maintain your
network, then you definitely need
to look into the packet level.

27

Packet analysis
• To analyze network problems by looking into the packets and their specific details so that you can get a

better hold over your network.

• To detect network intrusion attempts and whether there are any malicious users who are trying to get into
your network, or they have already got access to something in your network.

• To detect network misuse by internal or external users by establishing firewall rules in your security
appliance and then monitoring each of these rules through Wireshark.

• To isolate exploited systems so that the affected system doesn't become a pivot point for your network for
malicious users.

• To monitor data in motion once it travels live in your network to have better control over the allowed and
restricted categories of data. For instance, say you want to create a rule for your firewall that will block
the access to Bit Torrent sites. Blocking access to them can be done from your manageable router, but
knowing from where the request was originated can be easily audited through Wireshark.

• To gather and report network statistics by filtering the most specific packets as per your requirements
and then creating specific capture filters for your perusal that can help you in the long run.

• Learning who is on the network and what they are doing, is there something they are not allowed to
do, and is there anyone who is trying to bypass the network restrictions. All of these simple day-to-day
tasks can be achieved easily through Wireshark.

• To debug client/server communications so that all the request and replies communicated between the
peers on our network can be audited to maintain the integrity of your network.

• To look for applications that are sitting in the corner of your own network and eating the
bandwidth. They might be making your network insecure or making it visible to the public network.
Through this unnoticed application, different forms of network traffic can enter without any restrictions.

• To debug network protocol implementations and any kind of anomalies present due to various
misconfigurations in the current running devices.

28

Capturing methodologies

• Hub-based networks are the easiest ones to sniff out because

you've the freedom to place the sniffer at any place you want, as

hubs broadcast each and every packet to the entire network they

are a part of. So, we don't have to worry about the placement.

However, hubs have one weakness that can drastically decrease

network performance due to the collision of packets. Because hubs

do not have any priority-based system for device that send packets,

whoever wants to send them can just initiate the connection with the

HUB (central device) and start transmitting the packets. Often, more

than one devices start sending packets at the same instance. Now,

as a result, the collision of the packets will happen, and the sending

side will be informed to resend the previous packet. As a

consequence, things such as traffic congestion and improper

bandwidth utilization can be experienced.

29

The switched environment

• In port mirroring, once you have the command-line configuration

console or web-based interface to mage you're the access point

(router/switch), then we can easily configure port mirroring.

• Let's make it simpler for you with a logical illustration. For instance,

let's assume that we have a 24-ports switch and 8 PCs which (PC-1

to PC-8) are connected. We are still left with more than 15 ports.

Place your sniffer in any of those free ports and then configure port

mirroring, which will copy all the traffic from whatever device we

want to the port of our choice, where our protocol analyzer sits,

which can see the whole bunch of data traveling through the

mirrored port.

30

Port mirroring

31

Hubbing out

• Hubbing out is feasible when your switch doesn't support port

mirroring. To use the technique, you have to actually plug the target

PC out of the switched network, then plug your hub to the switch,

and then connect you analyzer and target device to the switch so

that becomes the part of the same network.

32

Hubbing out illustration

• Now, the protocol analyzer and the target are part of the same
broadcast domain. Your analyzer will easily capture every packet
destined to target or originated from the target. But make sure that the
target is aware about the data loss that can happen while you try to
create hubbing out for analysis. The image above will make it easier
for us to understand the concept precisely.

33

Getting ready

• Each Wireshark Windows
package comes with the
latest stable release of
Winpcap, which is required
for live packet capture. The
Winpcap driver is a
Windows version of the
UNIX libpcap library for
traffic capture.

• During the installation, you
will get the packages
installation window,
presented in the preceding
picture.

34

• Usually in these setup windows we simply check all and install it. In this
case we have some interesting things.

• Wireshark - this is the Wireshark version 2 software
TShark - a command-line protocol analyzer

• CLI commands

• Plugins and extensions:

– Dissector Plugins - Plugins with some extended dissections.

– Tree Statistics Plugins - Extended statistics.

• Mate - Meta-Analysis and Tracing Engine - User configurable
extension(s) of the display filter engine. Further discussion in the MATE
tool is in Appendix 3,Meta- Analysis and Tracing Engine

• SNMP MIBs - For a more detailed SNMP dissection.

35

36

• Tools:

– Editcap - Reads a capture file and writes some or all of the packets into

another capture file.

– Text2Pcap - Reads in an ASCII hex dump and writes the data into a pcap

capture file.

– Reordercap - Reorders a capture file by timestamp.

– Mergecap - Combines multiple saved capture files into a single output

file.

– Capinfos - Provides information on capture files. Rawshark - Raw packet

filter.

Capturing interfaces: single interface

• 1: select the interface

• 2: choose the fin

symbol to start

capturing

37

Opening trace files

• We can open the
existing trace
files based on the
format shows on
the image.

• But most popular
files are pcap,
pcapng, cap.

38

Practice I: open a trace files and saving the captured files

• Scenario I.

Sniff the WiFi traffic with

your Wireshark

• Scenario II

• Saving your the

capture file

39

Know your Wireshark

40

Display Filter Toolbar

Practise 2: configure the toolbar

• Scenario 1: setting up Name resolution • Scenario 2: Colorize packet list

41

• We will include some GeoIP files to translate IP to country with

Wireshark

• Reference: https://wiki.wireshark.org/HowToUseGeoIP

42

The intelligent scroll bar

• This is one of the features launched since version 2 release, and

you might have already noticed some colored sections/lines in the

scroll bar area.

• If not, then go back to any of the capture files you have, slowly scroll

up and down, and observe the coloring pattern in the scroll bar area.

• Any guesses what difference it would make in the analysis process?

• Let's understand this with an example.

43

Understanding the intelligent scrollbar

• We will use a previously captured file for demonstration purpose,

which has HTTP and HTTPS packets along with some

retransmission and duplicate frames. There is no difference that you

can figure out at first glance, but as soon as you start scrolling, the

coloring pattern will be shown in the scroll bar area.

• This pattern is based on the coloring rules that you have in your

application. For example, as per the default coloring rules, duplicate

and retransmission packets are usually seen with a black

background and a red foreground, and HTTP packets are shown

with a green background and a black foreground. Now, let's verify

this in the application itself.

44

Intelligent Scrollbar in action

45

• In the same way that the blue line indicates the selected packet, the

black lines denote the duplicate ACKs and retransmissions, and the

green-colored section indicates that at the bottom of the capture file,

we have some HTTP packets listed. By just observing the coloring

pattern in the scroll bar area, we can figure out what sort of packets

we have ahead, and most importantly, navigating to a certain section

of packets you are looking for is now much easier and faster.

• We already discussed customizing the coloring rules in previous

chapters; let's take one more example of the same capture file, and

this time, I want to customize the HTTP packet coloring rule. We will

change the green background color to yellow. Let's see what

difference it would make in the scroll bar area in the following

screenshot:

46

Practise 3: Changing the http coloring rules to yellow

Change to yellow

47

• To access the coloring rules, you need to click on View from the

menu bar and then choose Coloring Rules at the bottommost

corner, which will show you the dialog where all coloring rules will be

listed. Try changing the HTTP coloring rule to yellow. Once this has

been done, close the dialog and reopen the capture file in order to

see the change.

• Now, try scrolling the same file, and I hope you will see the

difference in the coloring pattern in the scroll bar and your list pane

too, where all HTTP packets are colored with a yellow background.

48

Intelligent scrollbar for http

Yellow colored
HTTP section

49

50

Display Filter comparison operators

51

SESSION 2

Learn Capture Methods and Use Capture Filters

52

Supported

filtering for

802.11 radiotap
2,248 PROTOCOLS

185,882 FIELDS

SOURCE: WIRESHARK

53

@seTajul

Locating Wireshark

Depending on your Use
Case, Wireshark can
exist in any parts on the
network

– Port mirror – Switch

– Port Mirror – Router

– Before / after the
Firewall

– Office
• Monitoring passively

• On the LAN side

54

Monitoring firewall

• You can use
monitoring Switch to
get the packet from
Firewall.

• If from the Internal
port, traffic coming
from the Internal
connection and with
external port, traffic
received from the
external firewall.

55

TAPS and Hubs

• TAPS: Test Access
Point

• Taps can forward any
errors that happens in
the networks

• Whereas, Switch is
more expensive
compare to taps.

• Recommended taps
are

• Hub: get the traffic
parallel from your
connection

• Hubs sometime
cannot receive a huge
traffic.

56

Capturing remote communication devices

tshark sshdump

tcpdump or ;

installing
pcap driver
from your

remote
machine

Using capture filters

• In this chapter we will cover the following domains:

– Configuring captures filters

– Configuring Ethernet filters

– Configuring hosts and networks filters

– Configuring TCP/UDP and port filters

– Configuring byte-offset and payload filters

58

• An overview of the capture filter syntax can be found in the User's

Guide. A complete reference can be found in the expression section

of the pcap-filter(7) manual page.

• Wireshark uses the same syntax for capture filters

as tcpdump, WinDump, Analyzer, and any other program that uses

the libpcap/WinPcap library.

• If you need a capture filter for a specific protocol, have a look for it at

the ProtocolReference.

59

http://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.html
http://www.tcpdump.org/manpages/pcap-filter.7.html
http://www.tcpdump.org/
https://wiki.wireshark.org/WinDump
http://analyzer.polito.it/
https://wiki.wireshark.org/ProtocolReference

Available capture interface(S)
In the start window, you will see the following
sections:

1. The main menus, with file, edit and view
operations, capture, statistics and various
tools.

2. The main toolbar, that provides quick
access to frequently used items from the
menu.

3. The filter toolbar, that provides access to
the display filters. In the main area of the
start window, we have the following items:

4. A list of files that were recently opened

5. A Capture part that enables us to
configure a capture filter, and sows us the
traffic on our computer interfaces.

6. The Learn part, that can take us directly
to the manual pages

60

Capturing single interface

• simplest way to start a
simple single-interface
capture is simply to
double-click the active
interface (1). You can
also mark the active
interface and click on the
capture button on the
upper-left corner of the
window (2), or choose
start or Ctrl-E from the
Capture menu
(3).

61

Capture on multiple interfaces

• In order to start the
capture on multiple
interfaces, you simply use
Windows Ctrl or Shift
keys, and left-click to
choose the interfaces you
want to capture data
from. In the following
screenshot you see that
the Wireless and the
Local Area connections
are picked up.

62

Filtering expression on the filter function

In filter expressions you configure which filter
expressions will appear at the right size of the display
filters bar at the top of the screen.

To configure display filter expressions:

1. Click on the Edit menu and choose preferences
and Filter expressions. The following window will
come up.

2. Choose Add and configure the button Label and
the filter expression.

3. As you can see in the following screenshot, the
Button Label will appear at the right side of the display
filters bar.

4. As you can see, the filters named TCP-Z-WIN and
TCP-RETR that we have configured in the filters
preferences appear at the right corner of the
Wireshark.

63

Practice 2: capture filters

• Open your Wireshark

• On the Main toolbar, choose
‘capture options’

• Source:
https://wiki.wireshark.org/Ca
ptureFilters

Capture only traffic to or from
IP address 172.18.5.4:

host 172.18.5.4

Capture traffic to or from a
range of IP addresses:

net 192.168.0.0/24

or
net 192.168.0.0 mask
255.255.255.0

Capture traffic from a range of
IP addresses:

src net 192.168.0.0/24

or
src net 192.168.0.0 mask
255.255.255.0

64

https://wiki.wireshark.org/CaptureFilters

Using display

filters:

conditions

65C-Like
Syntax

Shortcut Description Example

= eq Equal
ip.addr == 192.168.1.1 or

ip.addr eq 192.168.1.1

!=
ne Not equal

!ip.addr==192.168.1.1 or
ip.addr != 192.168.1.1 or
ip.addr ne 192.168.1.1

>
gt Greater than frame.len > 64

< lt Less than frame.len < 1500

>= ge Greater than or equal
to

frame.len >= 64

<= le
Less than or equal to frame.len <= 1500

Is present A parameter is
present

http.response

contains
Contains a string http.host contains cisco

matches A string matches the
condition

http.host matches www.cisco.com

Using display filters: operators

66

C-Like
Syntax

Shortcut Description Example

&& and Logical AND
ip.src==10.0.0.1 and tcp.flags.syn==1
all SYN flags sent from IP address 10.0.0.1 practically - all
connections opened (or tried to be opened) from 10.0.0.1

|| or Logical OR
ip.addr==10.0.0.1 or ip.addr==10.0.02 All packets going in or out
the two IP addresses

! not Logical NOT
not arp and not icmp All packets that are no ARP and not ICMP
packets

SSHDUMP

• sshdump - Provide interfaces to capture from a remote host through
SSH using a remote capture binary.

• To get deep understanding, we will access remotely our server using
the sshdump capabilities.

• Sshdump is an extcap tool that allows one to run a remote capture
tool over a SSH connection. The requirement is that the capture
executable must have the capabilities to capture from the wanted
interface.

• The feature is functionally equivalent to run commands like

$ ssh remoteuser@remotehost -p 22222 'tcpdump -U -i IFACE -w -' > FILE &
$ wireshark FILE

$ ssh remoteuser@remotehost '/sbin/dumpcap -i IFACE -P -w - -f "not port
22"' > FILE & $ wireshark FILE

$ ssh somehost dumpcap -P -w - -f udp | tshark -i -

67

Practise 3: capturing
traffic remotely

FROM THE THE CAPTURING
INTERFACE, CHOOSE SSH
REMOTE CAPTURE.

68

Click this!

Adding the

necessary

information

ON THE ’SERVER’ MENU
TAB, INPUT THE OBTAINED
IP FROM YOUR
INSTRUCTOR.

69

• From the
‘Authentication’ tab,
get the private key
file if necessary.

• SSH private key is
necessary if the
server authentication
needs the private
key.

70

SESSION 3

Customize for Efficiency: Configure Your Global Preferences

71

Configuring colouring rules and navigation techniques

• Coloring rules define how Wireshark will color protocols and events

in the captured data. Working with the coloring rules will help you a

lot with network troubleshooting, since you are able to see different

protocols in different colors, and you can also configure different

colors for different events.

• Coloring rules enable you to configure new coloring rules according

to various filters. It will help you to configure different coloring

schemes for different scenarios and save them in different profiles.

In this way you can configure coloring rules for resolving TCP

issues, rules for resolving Sip and Telephony problems, and so on.

72

Getting ready

For starting with the coloring

rules proceed as follows:

1. Go to the View menu.

2. At the lower part of the

menu choose Coloring

Rules. You will get the

following window as the image

on left.

In this window we see the

default coloring rules that we

have in Wireshark, including

rules for TCP and other

protocols events, routing

packets and others.

73

Creating customize coloring rules

To go to the coloring rules continue as follows:

1. For a new coloring rule, click on the new tab, and you will get the following window on the right.

2. In the Name field, fill in the name of the rule. For example, fill in NTP for the Network Time Protocol.

3. In the Filter field, fill the filter string, that is what you want the rule to show (we will talk about display filters in Chapter

4, Using Display Filters).

4. Click on the Foreground Color button and choose the foreground color for the rule. This will be the foreground color of

the packet in the packet list.

5. Click on the Background Color button and choose the background color for the rule. This will be the Background color

of the packet in the packet list.

6. Click on the Delete button (the - sign to the left of the +) to delete coloring rule.

7. Click on the Duplicate button (to the right of the - button) if you want to edit an existing rule.

8. You can also click on Import button to import an existing coloring scheme, or

9. click on the Export rule for exporting the current scheme.

74

See also

• You can find various types of coloring schemes on: http://wiki.wireshark.org/ColoringRules,

along with many other examples in a simple Internet search.

• To use one of the coloring rules files listed here, download it to your local machine, select

View | Coloring Rules in Wireshark, and click the Import... button.

75

Practice 1: Using time values and summaries

• To configure the time format, go to the View menu, and
under Time Display Format you will get the following
window:

How to do it...

• Date and Time of Day (the first three options): This will
be good to configure when you troubleshoot a network with
time-dependent events; for example, when you know about
an event that happens in specific times, and you want to
look at what happens on the network at the same time.

• Seconds Since 1970-01-01: Time in seconds since
January 1, 1970. Epoch is an arbitrary date chosen as a
reference time for a system, and January 1, 1970 was
chosen for Unix and Unix-like systems.

• Seconds Since Beginning of Capture: The default
configuration.

76

Continue..

• Seconds Since Previous Captured Packet: This is also a common
feature that enables you to see time differences between packets. This
can be useful when monitoring time-sensitive traffic such as TCP
connections, live video streaming, VoIP calls, and so on when time
differences between packets is important.

• Seconds Since Previous Displayed Packet: This is a useful feature,
that can be used when you configure a display filter, and only a
selected part of the captured data is presented (for example, a TCP
stream). In this case, you will see the time difference between packets
that can be important in some applications.

• UTC Date and Time of Day: Provides with relative UTC time.
The lower part of the sub-menu provides the format of the time display.
Change it only if a more accurate measurement is required.

• You can use also Ctrl + Alt + any numbered digit key on the keyboard
for the various options.

77

SESSION 4

Spot Network and Application Issues with Time Values and

Summaries

78

Day 4 - Spot Network and Application Issues with Time Values and Summaries

• Examine the Delta Time (End-of-Packet to End-of-Packet)

• Set a Time Reference

• Compare Timestamp Values

• Compare Timestamps of Filtered Traffic

• Enable and Use TCP Conversation Timestamps

• Compare TCP Conversation Timestamp Values

• Determine the Initial Round Trip Time (iRTT)

• Troubleshooting Example Using Time

• Analyze Delay Types

79

Pcapng vs pcap format

• Note that packets captured using the pcap file formats cannot define

nanosecond timestamp values. These features are included in

pcap-ng which is documented at

wiki.wireshark.org/Development/PcapNg.

• For more details on the pcap file format, refer to

wiki.wireshark.org/Development/LibpcapFileFormat

80

Troubleshooting Checklist

• Verify Trace File Integrity and Basic Communications

• Focus on Complaining User’s Traffic

• Detect and Prioritize Delays

• Look for Throughput Issues

• Check Miscellaneous Traffic Characteristics

• TCP-Based Application:

– Determine TCP Connection Issues/Capabilities

– Identify TCP Issues

• UDP-Based Application:

– Identify Communication Issues

• Spot Application Errors

81

Verify Trace File Integrity and Basic Communications

• Look for ACKed Unseen Segment (tcp.analysis.ack_lost_segment filter)

• Verify traffic from the complaining user’s machine is visible. If not…

– Ensure the host is running.

– Test the host’s connectivity (Can it communicate with another host?).

– Recheck capture location and process.

– Consider a resolution problem.

• Verify resolution process completion

– DNS queries/successful responses (consider cache use). See Detect

DNS Errors starting on

– ARP requests/responses (consider cache use). See MAC Address

Resolution – Local Target and MAC Address Resolution – Remote

Target on page 97 of Troubleshooting with Wireshark, 1st Edition.

82

Focus on Complaining User’s Traffic

• Filter on related traffic (such as tcp.port==80 && ip.addr==10.2.2.2).

See Filter on a Host, Subnet or Conversation, Filter on an

Applications Based on Port Number, Filter on Field Existence or

Field Value.

• Filter out unrelated traffic (such as !ip.addr==239.0.0.0/8 or perhaps

!bootp).

• Export related traffic to a separate trace file (File | Export Specified

Packets).

83

Detect and Prioritize Delays

• Sort and identify high delta times (Edit | Preferences | Columns |

Add | Delta time displayed).

• Sort and identify high TCP delta times (tcp.time_delta column).

– If Expert Infos items are seen, examine the Errors, Warnings and Notes

listings.

– Consider “acceptable delays” (such as delays before TCP FIN or RST

packets).

• Measure path latency (Round Trip Time) using delta times in TCP

handshake

– Capturing at client: measure delta from TCP SYN to SYN/ACK

– Capturing at server: measure delta from SYN/ACK to ACK

– Capturing in the infrastructure: measure delta from SYN to ACK

84

… continue

• Measure server response time

– TCP-based application: measure from ACK to response, not request to

ACK

– Use Wireshark’s response time function if possible (such as dns.time,

smb.time, and http.time)

• Measure client latency

– How long did it take for the client to make the next request?

– Consider “acceptable delays” (such as a delay before an HTTP GET).

85

Look for Throughput Issues

• Build the Golden Graph (IO Graph with “Bad TCP” on Graph 2).

• Click on low throughput points to jump to problem spots in the trace

file.

• Look at traffic characteristics at low throughput points.

• Consider using an Advanced IO Graph to detect delays (such as

tcp.time_delta).

86

Check Miscellaneous Traffic Characteristics

• Check packet sizes during file transfer (Length column).

• Check IP DSCP for prioritization.

• Check 802.11 Retry bit setting (wlan.fc.retry == 1).

• Check for ICMP messages.

• Check for IP fragmentation.

87

TCP-Based Application: Determine TCP Connection Issues/Capabilities

• Look for unsuccessful TCP handshakes.

– SYN, no answer

– SYN, RST/ACK

• Examine the TCP handshake Options area.

– Check MSS values.

– Check for Window Scaling and Scale Factor.

– Check for Selective ACK (SACK).

– Check for TCP Timestamps (especially on high-speed links).

88

TCP-Based Application: Identify TCP Issues

• Launch the Expert Infos window.

– Consider number of errors, warnings and notes

– Consider impact of each item

• Check the Calculated window size field values (tcp.window_size).

• Examine unexpected TCP RSTs.

89

Spot the issue

UDP-Based Application:
Identify Communication Issues

• Look for unsuccessful

requests.

– Request, no answer

• Look for repeated

requests.

Spot Application Errors

• Filter for application error

response codes (such as

sip.Status-Code >=

400).

90

difference between capture filters and

display filters?

• Capture filters are applied to traffic during the capture process

only. Capture filters cannot be applied to existing trace files.

• Display filters can be used while capturing, but do not limit the

packet you capture—display filters only limit what is visible. Display

filters can be applied to existing trace files. Each filter type uses a

different filter syntax.

91

About: iRTT

• The Wireshark initial Round Trip Time (iRTT) value is calculated

when the first two packets of a TCP handshake are seen {SYN,

SYN/ACK}. This value will remain the same for the entire TCP

conversation. {tcp.analysis.initial_rtt}

• When you graph RTT in an IO graph, latency times are depicted

between a data packet and the subsequent acknowledgment

packet.

• You can always do your own handshake analysis and filter on

{tcp.flags.syn==1} to find the start of the conversation and then set

time deltas to calculate individual session RTTs.

92

Create Additional Time Columns

• If you want to view two or more Time columns in your Packet List
pane, use Edit | Preferences to add a predefined Time column
value or expand the Frame header, right click on a time field and
select Apply As Column. Alternately, select Edit | Preferences |
Columns | Add and select one of the following time-related field
types:

– Absolute date and time—based on the date and time of the capturing
host (this is the same as the Date and Time of Day setting)

– Absolute time—based on the time of the capturing host (this is the
same as the Time of Day setting)

– Delta time (conversation)—time from the end of one packet to the end
of the next packet in a conversation

– Delta time displayed—time from the end of one packet to the end of
the next packet of displayed packets only (this is the same as Seconds
Since Previous Displayed Packet)

93

• Relative time - time from the first packet in the trace file (this is the

same as the Seconds Since Beginning of Capture setting)

• Relative time (conversation) - time from the first packet in the

trace file for the conversation only

• Time (format as specified) - this setting displays the value set

using View | Time Display Format

* Using two Time columns you can easily compare the arrival packet

time (Time since Beginning of Capture) to the delta time (Time since

Previous Displayed Packet).

94

Spot Network and Application
Issues with Time Values and

Summaries

• With this scenario,
we will use a
sample PCAP file
and start analyzing
the issues base on
the time.

• Add column to your
Wireshark interface
with Delta time
column

95

Examine delta time (end-of-packet to end-of-

packet)

• Add delta column
• Look at Statistics -> Conversations to identify connection of interest
• Review 3-way handshake

– iRTT

–MSS

–Window scale

• Adjust columns / config as needed

96

TCP/IP Communications and Resolutions

Overview

TCP: This is a connection-oriented protocol, often called a reliable

protocol. Here, firstly, a dedicated channel is created between two

hosts and then data is transferred. Then, the sender sends equally

partitioned chunks, over the dedicated channel, and then, the receiver

sends the acknowledgement for every chunk received. Most commonly,

the sender waits for a particular time after which it sends the same

chunk again for assurance. For example, if you are downloading

something, TCP is the one that takes care and makes sure that every

bit is transferred successfully.

97

Tcp flags

98

The OSI and DARPA reference models

SESSION 5

Troubleshooting and analysing network packets

100

What is iRTT
The Wireshark initial Round Trip Time (iRTT) value is calculated when the first two packets of a TCP
handshake are seen {SYN, SYN/ACK}. This value will remain the same for the entire TCP conversation.
{tcp.analysis.initial_rtt}

When you graph RTT in an IO graph, latency times are depicted between a data packet and the
subsequent acknowledgment packet.

You can always do your own handshake analysis and filter on {tcp.flags.syn==1} to find the start of the
conversation and then set time deltas to calculate individual session RTTs.

Source: https://osqa-ask.wireshark.org/questions/21813/how-is-rtt-calculated

iRTT: 0.18002700
seconds

101

https://osqa-ask.wireshark.org/questions/21813/how-is-rtt-calculated

How to do it?

1. Start with capturing filter.

2. Set time to Seconds Since Previous Displayed
Packet.

102

.. continue

4. From the Packet Details, find the SEQ/ACK
analysis from Transmission Control Protocol
and look at the iRTT detail.

5. Add column to the Packet List pane.

103

Getting the sample

• We will analyzing a sample
PCAP based on the official
wireshark sample capture.

• Download the pcap here:
https://wiki.wireshark.org/Sa
mpleCaptures

• ARP Request:
https://wiki.wireshark.org/Sa
mpleCaptures?action=Attac
hFile&do=get&target=rarp_r
equest.cap

• ICMP:
https://wiki.wireshark.org/Sa
mpleCaptures?action=Attac
hFile&do=get&target=ipv4fr
ags.pcap

• TCP and JPeG:
https://wiki.wireshark.org/Sa
mpleCaptures?action=Attac
hFile&do=get&target=http_
with_jpegs.cap.gz

104

https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=ipv4frags.pcap

Measure Slow DNS Response Time

• Open dns-slow.pcapng. Select View | Time Display Format |
Seconds since Previous Displayed Packet.

• How much time elapsed between the first and second DNS query for
www.ncmec.org? You should see1.000620 seconds.

• How much time elapsed between the first and second DNS
response for www.ncmec.org? Right click on the first DNS response
and set a time reference to measure this value. (By the time the
second DNS response arrived, the client had closed the listening
port for the DNS response –that’s why the client sent an ICMP
Destination Unreachable/Port Unreachable response. You should
see 0.184489 seconds between the first and second DNS response
packet.

• How much time did it take for the server to answer the DNS query in
packet 98? You should see .207250 seconds elapsed between the
DNS query in packet 98 and the DNS response in packet 107.

105

Measure a High Latency Path

• Open http-download-good.pcapng. Reset the Time column to

Seconds since Previous Displayed Packet. What is the latency

time between the first and second packets of the TCP handshake

(packets1 and 2)? You should see 0.179989 seconds.

• Sort the Time column. What is the largest time delay in the trace

file? You should see 2.753091 seconds is the largest time delay in

the trace file.

• Sort by the Number (No.) column. What happened around the

largest time delay in the trace file? You should see a TCP window

update process occurred at this time.

106

tshark

NAME
tshark – Dump and analyze network traffic

SYNOPSIS
tshark [-2] [-a <capture autostop condition>] ... [-b <capture ring buffer option>] ... [-B <capture buffer size>] [-c <capture packet count>] [

-C <configuration profile>] [-d <layer type>==<selector>,<decode-as protocol>] [-D] [-e <field>] [-E <field print option>] [-f <capture filter>

] [-F <file format>] [-g] [-h] [-H <input hosts file>] [-i <capture interface>|-] [-j <protocol match filter>] [-I] [-K <keytab>] [-l] [-L] [-n] [

-N <name resolving flags>] [-o <preference setting>] ... [-O <protocols>] [-p] [-P] [-q] [-Q] [-r <infile>] [-R <Read filter>] [-s <capture

snaplen>] [-S <separator>] [-t a|ad|adoy|d|dd|e|r|u|ud|udoy] [-T ek|fields|json|jsonraw|pdml|ps|psml|tabs|text] [-u <seconds type>] [-U

<tap_name>] [-v] [-V] [-w <outfile>|-] [-W <file format option>] [-x] [-X <eXtension option>] [-y <capture link type>] [-Y <displaY filter>] [

-M <auto session reset>] [-z <statistics>] [--capture-comment <comment>] [--list-time-stamp-types] [--time-stamp-type <type>] [--

color] [--no-duplicate-keys] [--export-objects <protocol>,<destdir>] [--enable-protocol <proto_name>] [--disable-protocol

<proto_name>] [--enable-heuristic <short_name>] [--disable-heuristic <short_name>] [<filter>]

tshark -G [<report type>] [--elastic-mapping-filter <protocols>]

Source: https://www.wireshark.org/docs/man-pages/tshark.html

107

Analyze http traffic

1. Open your internet browser

2. Click on "Capture > Interfaces". A
pop up window will show up.

3. You probably want to capture traffic
that goes through your ethernet
driver. Click on the Start button to
start capturing traffic via this
interface.

4. Visit the URL that you wanted to
capture the traffic from. For
example, open
http://www.polimas.edu.my

5. Go back to your Wireshark screen
and press Ctrl + E to stop
capturing.

6. On the filter pane, input ‘http’ to
see the http traffic

108

http://www.polimas.edu.my/

Analyzing File

Transfer

Protocol (FTP)

Traffic

The objectives of FTP are 1) to promote sharing of
files (computer programs and/or data), 2) to
encourage indirect or implicit (via programs) use of
remote computers, 3) to shield a user from variations
in file storage systems among hosts, and 4) to
transfer data reliably and efficiently. FTP, though
usable directly by a user at a terminal, is designed
mainly for use by programs. The attempt in this
specification is to satisfy the diverse needs of users
of maxi-hosts, mini-hosts, personal workstations,
and TACs, with a simple, and easily implemented
protocol design. This paper assumes knowledge of
the Transmission Control Protocol (TCP) [2] and the
Telnet Protocol [3]. These documents are contained
in the ARPA-Internet protocol handbook [1].

Source: https://tools.ietf.org/html/rfc959

109

https://tools.ietf.org/html/rfc959#ref-2
https://tools.ietf.org/html/rfc959#ref-3
https://tools.ietf.org/html/rfc959#ref-1

Analyzing ftp problems

• File Transfer Protocol (FTP) is a protocol created for transferring

files over TCP/IP across a network. FTP is a protocol that runs over

TCP ports 20 and 21 for the data and control connections (FTP

commands) respectively

• FTP has two modes of operation

– Active mode (ACTV): In this mode, the client initiates a control

connection to the server, and the server initiates a data connection to

the client

– Passive mode (PASV): In this mode, the client initiates the control and

data connections to the server

Both types of connections can be implemented, and they will be

explained later in this recipe in the How it works... section.

110

Getting ready

• When working with FTP, if you suspect any connectivity or slow

response problems, configure port mirror to one of the following:

– The FTP server port

– The client port

– A link that the traffic crosses

• If required, configure a capture or display filter.

If required, configure a capture or display filter.

111

checking FTP performance problems

1. First, check for any Ethernet, IP, or TCP problems. In many cases,

slow responses happen due to networking problems and not

necessarily due to application problems.

2. Check for TCP retransmissions and duplicate ACKs. Check if they

are on the entire traffic or only on the FTP connection.

3. If you get it on various connections, it is probably due to a slow

network that influences the entire traffic.

4. If you get it only on FTP connections to the same server or client, it

can be due to a slow server or client.

5. When you are copying a single file in an FTP file transfer, you should

get a straight line in the IO graph and a straight gradient in the TCP

stream graph (time-sequence).

112

• In the following

screenshot, we can

see what a bad FTP

looks like in the TCP

stream graph (time-

sequence):

113

Bad FTP in tcp stream graph

• In the screenshot on

the left, we can see

what a bad FTP looks

like in the TCP stream

graph (time-

sequence)

114

IO graph for bad tcp

• Following screenshot

shows the IO Graph

(configured with

filters)

115

What does TCP Zero Window mean?
• Zero Window is something to investigate.

• TCP Zero Window is when the Window size in a machine remains at zero for a specified amount

of time.

• TCP Window size is the amount of information that a machine can receive during a TCP session

and still be able to process the data. Think of it like a TCP receive buffer. When a machine initiates

a TCP connection to a server, it will let the server know how much data it can receive by the

Window Size.

• In many Windows machines, this value is around 64512 bytes. As the TCP session is initiated and

the server begins sending data, the client will decrement it's Window Size as this buffer fills. At the

same time, the client is processing the data in the buffer, and is emptying it, making room for more

data. Through TCP ACK frames, the client informs the server of how much room is in this buffer. If

the TCP Window Size goes down to 0, the client will not be able to receive any more data until it

processes and opens the buffer up again. In this case, Protocol Expert will alert a "Zero Window"

in Expert View.

• Troubleshooting a Zero Window For one reason or another, the machine alerting the Zero Window

will not receive any more data from the host. It could be that the machine is running too many

processes at that moment, and its processor is maxed. Or it could be that there is an error in the

TCP receiver, like a Windows registry misconfiguration. Try to determine what the client was doing

when the TCP Zero Window happened.
Source: flukenetworks.com

116

Configuring Ethernet, ARP, host, and network

filters
• In this recipe we will discuss how to configure filters of layers 2 and

3, that is, Ethernet- and IP-based filters respectively. We will also

discuss Address Resolution Protocol (ARP) filters.

• In layer 2 we will configure Ethernet-based filters, while in layer 3 we

will configure IP-based filters. In Ethernet we have filters based on

the Ethernet frame and the MAC address, while in IP we have filters

based on the IP packet and address.

• The common frame delta filters are as follows:

– frame.time_delta: This is used for the time delta between the current

and previously captured frames; this will be used in statistical graphs

displayed in Chapter 5, Using Advanced Statistics Tools

– frame.time_delta_displayed: This is used for the time delta between

current and previously displayed frames;

117

• Since the time between frames can influence TCP performance

significantly, we will use the frame.time_delta parameters in

statistical graphs for monitoring TCP performance.

• The common layer 2 (Ethernet) filters are as follows:

– eth.addr == <MAC Address>: This is used to display a specific MAC

address

– eth.src == <MAC Address>: This is used to get the source MAC address

– eth.dst == <MAC Address>: This is used to get the destination MAC

address

– eth.type == <Protocol Type (Hexa)>: This is used to get the Ethernet

protocol types

118

• The common ARP filters are as follows:

– arp.opcode == <value>: This is used for ARP requests/responses

– arp.src.hw_mac == <MAC Address>: This is used to capture the ARP

address of the sender

• The common layer 3 (IP) filters are as follows:

– ip.addr == <IP Address>: This is used to get the source or destination IP

address
– ip.src == <IP Address>: This is used to get the source IP address

– ip.dst == <IP Address>: This is used to get the destination IP address

– ip.ttl == <value>, ip.ttl < value>, or ip.ttl > <value>: This is used to get IP TTL (Time To Live)

values

– ip.len = <value>, ip.len > <value>, or ip.len < <value>: This is used to get IP packet length

values

– ip.version == <4/6>: This is used to get the IP protocol version (Version 4 or Version 6)

119

How to do it

Here we will see some

common examples for

layer 2 and 3 filters.

120

The table refers to ip.addr and ipv6.addr filter strings. The value for
any field that has an IP address value can be written the same way.

ethernet and ARP filters

Ethernet filters

• These are classified
into two categories:
– To display only packets

sent from or to specific
MAC addresses, use
something like these:
eth.src ==
10:0b:a9:33:64:18 and
eth.dst ==
10:0b:a9:33:64:18

– To display only
broadcasts, use Eth.dst
== ffff.ffff.ffff

ARP filters

• These are classified into two categories:
– To display only ARP requests, use arp.opcode == 1

– To display only ARP responses, use
arp.opcode == 2

121

1. To display only packets from a specific IP address, use something

like this: ip.src==192.168.1.4

2. To display only packets that are not from a specific address, use

something like this: !ip.src==192.168.1.4

3. To display only packets between two hosts, use something like

these: ip.addr==192.168.1.104 and ip.addr==192.168.1.100

4. To display only packets that are sent to multicast IP addresses, use

something like this: ip.dst == 224.0.0.0/4

5. To display only packets coming from the network 192.168.1.0/24

(mask 255.255.255.0), use ip.src==192.168.1.0/24

122

Ipv6

• To display only IPv6 packets to/from specific addresses, use

something like the following:

– ipv6.addr == ::1

– ipv6.addr == 2008:0:130F:0:0:09d0:666A:13ab

– ipv6.addr == 2006:0:130f::9c2:876a:130b

– ipv6.addr == ::

123

Complex filters

• To check for packets sent from the network 10.0.0.0/24 to a website

that contains the word packt, use ip.src == 10.0.0.0/24 and http.host

contains "packt"

• To check for packets sent from the network 10.0.0.0/24 to websites

that end with .com, use ip.addr == 10.0.0.0/24 and http.host

matches "\.com$"

• To check for all the broadcasts from the source IP address 10.0.0.0,

use ip.src == 10.0.0.0/24andeth.dst == ffff.ffff.ffff

• To check for all the broadcasts that are not ARP requests, use not

arp and eth. dst == ffff.ffff.ffff

• To check for all the packets that are not ICMP, use !arp || !icmp, and

to check for all the packets that are not ARP, use not arp or not icmp

124

Domain name system (DNS)

• DNS is the system used to resolve
store information about domain
names including IP addresses,
mail servers, and other
information.

History

• DNS was invented in 1982-1983
by Paul Mockapteris and Jon
Postel.

Protocol dependencies

• TCP/UDP: Typically, DNS
uses TCP or UDP as its transport
protocol. The well known
TCP/UDP port for DNS traffic is
53.

Display Filter

• A complete list of DNS display
filter fields can be found in
the display filter reference

• Show only the DNS based traffic:
dns

Capture Filter

• You cannot directly filter DNS
protocols while capturing if they
are going to or from arbitrary
ports. However, DNS traffic
normally goes to or from port 53,
and traffic to and from that port is
normally DNS traffic, so you can
filter on that port number.

• Capture only traffic to and from
port 53: udp.port== 53

125

https://wiki.wireshark.org/TCP
https://wiki.wireshark.org/UDP
https://wiki.wireshark.org/TCP
https://wiki.wireshark.org/UDP
http://www.wireshark.org/docs/dfref/d/dns.html

Analyzing DNS traffic

• As we know, the DNS protocol runs over a UDP or TCP. There are

various response code that relate to DNS errors that range from 0 to

21. The dissectors present in Wireshark do know about response

code. Using this, Wireshark is able to show you messages relevant

to the error code.

• To replicate an error, I will visit a website that does not exist on the

Web; hence, I will receive an error. But my gateway does not know

about this, so it will try to resolve the IP address associated with that

name.

• In return, we will see a DNS response containing an error. The

infrastructure is the same that we used in the preceding examples.

126

Capturing the DNS traffic using nslookup

• You can replicate the scenario step by step with me or do it later

once you finish reading. Follow these steps to replicate the scenario:

• Open Wireshark and start capturing. Let it run in the background.

• Open a terminal (Command Prompt) of whichever operating system

you are using, type nslookup in it, and press Enter.

• Now, you'll enter the interactive mode of the nslookup tool. If you are

not aware of the tool, do read about it before you proceed. There are

plenty of documents available for the tool. Refer to the following

screenshot:

127

Looking the unknown domain

• To generate DNS error response
code, just type any domain name
and press Enter. Before you
specify a domain change the type
of query to A by using the set
type=a command and then give
the domain you want.

• First, we can try the same for a
domain that exists, such as
tajul.co Then, you can try it for the
nonexistent domain. e.g: ttajull.co.

• The preceding screenshot shows
the various IP addresses that are
associated with the tajul.co
domain. The domain already
exists. That's why we are able to
see the reply.

128

• I typed my name in place of
the domain name and
pressed Enter, and this is
what I saw because there
was no domain with that
name. The DNS server was
not able to resolve an IP
address, hence resulting in
the reply server can't find.

• Now, you can go back to
Wireshark and stop the
capture process. We will
now start analyzing error
code.

• The best option would be to
segregate the DNS error
response code from the
normal frames in the trace
file that we have. To achieve
this, apply the dns.
flags.rcode ==3 display
filter, which means that the
shown DNS response frame
with error code 3 is for
nonexistent domains. For
more information on DNS
error code, visit
https://tools.ietf.org/html/rfc
2929.

129

Looking the error for dns request

• Once you have applied the preceding

display filter, you will only see relevant

packets matching your filter expression.

• Filter capture for DNS error code:

dns.flags.rcode==3

130

131

Analyzing ARP traffic

• The Address Resolution Protocol is used to dynamically discover the

mapping between a layer 3 (protocol) and a layer 2 (hardware)

address. A typical use is the mapping of an IP address (e.g.

192.168.0.10) to the underlying Ethernet address (e.g.

01:02:03:04:05:06). You will often see ARP packets at the beginning

of a conversation, as ARP is the way these addresses are

discovered.

• ARP can be used for Ethernet and other LANs, ATM, and a lot of

other underlying physical addresses (the list of hardware types in

the ADDRESS RESOLUTION PROTOCOL

PARAMETERS document at the IANA Web site includes at least 33

hardware types).

132

https://wiki.wireshark.org/IP
https://wiki.wireshark.org/Ethernet
http://www.iana.org/assignments/arp-parameters
https://wiki.wireshark.org/IANA

… continue

• ARP is used to dynamically build and maintain a mapping database

between link local layer 2 addresses and layer 3 addresses. In the

common case this table is for mapping Ethernet to IP addresses. This

database is called the ARP_Table. Dynamic entries in this table are

often cached with a timeout of up to 15 minutes, which means that once

a host has ARPed for an IP address it will remember this for the next 15

minutes before it gets time to ARP for that address again.

• A peculiarity of ARP is that since it tries to reduce/limit the amount of

network traffic used for ARP a host MUST use all available information

in any ARP packet that is received to update its ARP_Table. Thus

sometimes a host sends out ARP packets NOT in order to discover a

mapping but to use this side effect of ARP and preload the ARP table of

a different host with an entry. These special ARP packets are referred to

as Gratuitous_ARPs and Wireshark will detect and flag the most

common versions of such ARPs in the packet summary pane.

133

https://wiki.wireshark.org/ARP_Table
https://wiki.wireshark.org/ARP_Table
https://wiki.wireshark.org/Gratuitous_ARP

Gratuitous ARP

• Gratuitous_ARPs are more important than one would normally

suspect when analyzing captures. So don't just ignore them or filter

out ARP from your capture immediately. Consider that a normal host

will always send out a Gratuitous_ARP the first thing it does after the

link goes up or the interface gets enabled, which means that almost

every time we see a Gratuitous_ARP on the network, that host that

sent it has just had a link bounce or had its interface

disabled/enabled. This is very useful information when

troubleshooting networks. Remember though that you can only see

these Gratuitous_ARPs (or any other ARPs for that matter) if your

capture device is in the same Broadcast Domain as the host that

originates the ARP packet.

• Several viruses send a lot of ARP traffic in an attempt to discover

hosts to infect; see the ArpFlooding page.

134

https://wiki.wireshark.org/Gratuitous_ARP
https://wiki.wireshark.org/Gratuitous_ARP
https://wiki.wireshark.org/Gratuitous_ARP
https://wiki.wireshark.org/Gratuitous_ARP
https://wiki.wireshark.org/Broadcast%20Domain
https://wiki.wireshark.org/ArpFlooding

Arp flooding : source-

https://wiki.wireshark.org/ArpFlooding
• If you see a lot of ARP traffic from a single machine, looking for MAC addresses for

many of the IP addresses on your local network, there might be a virus on your
network that's scanning your network for machines to infect. It's been claimed that the
Wootbot virus does this.

• This is not limited to Wootbot - i have observed during nachi outbreak networks very
flooded with random arp and icmp requests which was very hard on L2/L3 devices -
Anith Anand

• -updated 6th Mar 05 (NetworkFlooding)

• It is not just worms and viruses that can bring down the network or firewall - recently i
was troubleshooting slow production network problem for a large organisation -
intially i suspected it as some kinda virus outbreak or ddos attacks ..however thanks
to wireshark - when i port spanned the firewall interfaces i noticed as much as
300,000 packets per min (5000 udp packets per second) in addition to the regular
traffic was traversing through firewall (checkpoint) on single interface (double it for
exit interface) which made it bleed badly - even simple ping across f/w interface will
timeout during this event - the above traffic was created by faulty (or mis configured)
syslog listenter service which was pumping those error messages - however i should
also thank "pathping" utility found in XP as it helped me in zooming into the problem
by providing RTT and Packet Drop rate across network use pathping with -n option to
make it work for you faster - "Anith Anand"

135

https://wiki.wireshark.org/ArpFlooding
https://wiki.wireshark.org/NetworkFlooding

Protocol dependencies

Layer 2 protocols:

• ATM: ARP can use ATM as
its transport mechanism.

• Ethernet: ARP can
use Ethernet as its transport
mechanism. The assigned
Ethernet type for ARP traffic
is 0x0806.

• Other LANs: ARP can also
be used on Token Ring,
FDDI, and IEEE 802.11; the
same assigned type is
used.

Layer 3 protocols:

• IP: ARP can
map IP addresses to layer 2
addresses.

136

https://wiki.wireshark.org/ATM
https://wiki.wireshark.org/ATM
https://wiki.wireshark.org/Ethernet
https://wiki.wireshark.org/Ethernet
https://wiki.wireshark.org/IP
https://wiki.wireshark.org/IP

filter

Display filter

• A complete list of ARP
display filter fields can be
found in the display filter
reference

• Show only the ARP
based traffic: arp

Capture filter

• You can filter ARP
protocols while capturing.

• Capture only the ARP
based traffic: arp

or:

• ether proto \arp

Capturing only ARP packets
is rarely used, as you won't
capture any IP or other
packets. However, it can be
useful as part of a larger
filter string.

137

http://www.wireshark.org/docs/dfref/a/arp.html

138

Display Filter Reference: Address Resolution Protocol

10 keys of troubleshooting steps

• Baseline "NormalTraffic

• Use Color

• Look Who's Talking:
Examine Conversations
and Endpoints

• Focus by Filtering

• Create Basic IO Graphs

• Examine the Expert
System

• Follow the Streams

• Graph Bandwidth Use,
Round Trip Time, and
TCP Time/Sequence
Information

• Watch Refusals and
Redirections

• Examine Delta Time
Values

139

Internet Control Message protocol

• Used by network devices such as routers to send error messages

indicating that a requested services is not available, or a host or

network router could not be reach.

• A control protocol

• Although it is transported as IP datagrams, it does not carry

application data – instead , it carries information about the status of

the network itself.

140

ICMP pings

• One of the most well-known uses of ICMP is to ping, wherein a

device sends an ICMP echo request (Type 8, Code 0) packet to a

distant host (via that host's IP address), which will (if the ICMP

service isn't disabled or blocked by an intermediate firewall) respond

with an ICMP echo reply (Type 0, Code 0) packet. Pings are used to

determine whether the target host is available and can be reached

over the network. By measuring the time that expires between ping

requests and replies, we know the round trip time (RTT) delay time

over the network path.

141

ICMP traceroutes

• A variation of ping functionality is used to perform a traceroute (also known as traceroute), which is
a list of the IP addresses of the router interfaces that packets traverse to get from a sending device
to a target host or device. The traceroutes are used to determine or confirm the network path taken
from a sending device to a target host or device.

• A traceroute is accomplished by sending the ICMP echo request packets to a distant host just as in
a normal ping, but with modifications to the Time-to-Live (TTL) field in the IP header of each
packet. The traceroute function takes advantage of the fact that each router in a network path
decrements the TTL value in a packet by 1, so as the packet traverses, the routers in a path and
the TTL value will decrease accordingly along the way. If a router receives a packet with a TTL
value of 1, it will send an ICMP TTL exceeded in transit (Type 11, Code 0) error message back to
the sender (along with a copy of the request packet it received) and otherwise discard (not
forward) the packet.

• The traceroute works by sequentially setting the TTL in multiple ICMP request packets to 1, then to
2, then 3, and so on, which results in each router in the network path sending TTL exceeded error
messages back to the sender. Since these returned messages are sent by the in-path router using
the IP address of the interface where the ICMP packet was received, the traceroute utility can build
and display a progressive list of router interface IP addresses in the path and the RTT delay to
each router

142

ICMP PACKET ANALYSIS

• The Wireshark packet details
fields for the ICMP packet
illustrated in the following
screenshot depict a Time-to-live
exceeded message as seen in a
typical traceroute capture.

• The following points are
significant to analyze this packet:

– The source IP address seen in the
IPv4 header summary is
10.192.128.1, which is the IP
address of the router interface
sending the ICMP message to the
originator, 192.168.1.115

– The ICMP packet is Type 11, Code
0 (TTL exceeded in transit)

143

…CONTINUE (ICMP ANALYSIS)

• The second set of IPv4 and ICMP headers that follow the first IPv4
and ICMP headers are copies of the original packet transmitted by
the sender. This copy is returned to allow determination of the
packet that caused the ICMP message. The significant points in the
packet details of this ICMP message copy include:

– The target destination IP address, where the echo request packet was
intended to be sent (and would have been if the TTL value hadn't been
altered) is 205.251.242.51.

– The TTL value was 1 when this packet reached the 10.192.128.1 router
interface. This packet cannot be forwarded, resulting in the TTL
exceeded message being sent back to the sender.

– The original ICMP packet was a Type 8, Code 0 echo request message.

– The Header Data section of the ICMP packet for the echo requests and
replies will include a 16-bit identifier and 16-bit sequence number, which
are used to match echo replies to their requests.

144

ICMP REDIRECT

Another common use of ICMP is
to redirect a client to use a
different default gateway (router)
to reach a host or network than
the gateway it originally tried to
use. In the ICMP Redirect packet
depicted in the following
screenshot, a number of packet
fields should be noted:

– The source IP address of the ICMP redirect packet is
192.168.1.1, which was the client's default gateway; this is
the router sending the redirect packet back to the client

– The ICMP Type is 5 (Redirect) and Code is 1 (Redirect for
host)

– The gateway IP address that the router 192.168.1.1 is telling
the client to use to reach the desired target host is
192.168.1.2

– The IP address of the target host was 10.1.1.125

145

WIRESHARK ICMP FILTERS

• Capture filters(s): icmp

• Display filter(s):icmp.type==5 && icmp.code==1 (host redirects)

146

ICMP control
message

types

147

Analyzing udp traffic

• The UDP layer provides datagram based connectionless transport

layer (layer 4) functionality in the InternetProtocolFamily.

• UDP is only a thin layer, and provides not much more than the

described UDP port multiplexing. Just like IP, UDP doesn't provide

any mechanism to detect PacketLoss, DuplicatePackets, and the

like. There are a lot of protocols on top of UDP,

including: BOOTP, DNS, NTP, SNMP, ...

Protocol dependencies

• IP: Typically, UDP uses IP as its underlying protocol. The assigned

protocol number for UDP on IP is 17.

148

https://wiki.wireshark.org/UDP
https://wiki.wireshark.org/InternetProtocolFamily
https://wiki.wireshark.org/IP
https://wiki.wireshark.org/PacketLoss
https://wiki.wireshark.org/DuplicatePackets
https://wiki.wireshark.org/BOOTP
https://wiki.wireshark.org/DNS
https://wiki.wireshark.org/NTP
https://wiki.wireshark.org/SNMP
https://wiki.wireshark.org/IP
https://wiki.wireshark.org/IP

.. continue

• The UDP dissector is fully functional. There are two statistical menu

items for UDP available: Statistics/Endpoints which contains a tab

showing all UDP endpoints (combination of IP address and UDP

port) and Statistics/Conversations, which contains a tab showing all

UDP conversations (combination of two endpoints).

Display Filter

• A complete list of UDP display filter fields can be found in the display

filter reference

• Show only the UDP based traffic: udp

Capture Filter

• Capture only the UDP based traffic: udp

149

http://www.wireshark.org/docs/dfref/u/udp.html

Analyze TCP protocols

• The goal of Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) is to pass information between end

applications, for example, from a web client to a web server, mail

client to a mail server, and so on. This is done by providing

identification to end applications and forwarding packets between

them. These identifications are called port numbers, and a port

number with its IP address is called a socket. In the following

diagram you can see what happens when you open a connection

from your browser to a web server. The web server listens on port

80 and you will open a connection, for example, from port 1024.

• So, the server is listening to requests on port 80 and will send

responses to you on port 1024.

150

TCP handshake

• So, the server
is listening to
requests on
port 80 and
will send
responses to
you on port
1024.

151

Configuring TCP and UDP preferences for troubleshooting

• In most cases you
can use the default
Wireshark parameters
for TCP and UDP
network analysis, but
there are also some
changes that can be
configured. The
changes will be
configured in the
Preferences window.

• Getting ready

• For TCP or UDP
configuration:

• Start Wireshark, and
from the Edit menu,
choose Statistics.

• Under Protocols,
choose TCP or UDP.

152

• By default only the

first parameter is set.

In most cases it is

enough.

153

You can configure the following parameters in TCP:

• Show TCP summary in protocol tree: Mark this button if you want the TCP summary line to be
shown in the protocol tree (set by default).

• Validate the TCP checksum if possible: This feature can slow down performance. In most cases
it is not required.

• Allow subdissector to reassemble TCP streams: This option is for stream analysis (set by
default).

• Analyze TCP sequence numbers: When this is set, Wireshark analyzes sequence numbers and
track phenomena such as retransmission, duplicate ACKs, and so on, which is one of the
important features of Wireshark.

• Relative sequence numbers: When this is set, Wireshark will show you every TCP connection
that starts from Seq=0.

• Track number of bytes in flight: This setting enables Wireshark to track the number of
unacknowledged bytes flowing on the network (set by default).

• Calculate conversation timestamps: This feature enables the calculations of TCP timestamps
option.

• Try heuristic sub-dissectors first: Try to decode a packet using heuristic method before using a
sub-dissector registered to the specific port.

• Ignore TCP Timestamps in summary: Ignore the timestamp option in the TCP header. f Do not
call subdissector for error packets: This option does not analyze erroneous TCP packets.

154

TCP preferences

• Referring to relative sequence numbers, when you look at a TCP connection you

see that it always starts with sequence numbers equal to zero. These are the

relative numbers that are normalized to zero by Wireshark. The real numbers are

numbers between 0 and 232, picked by the TCP process, which are difficult to

follow. The TCP standard does not set any rule for picking this number.

• The calculating conversations timestamps refers to the timestamp option of the

TCP packet. The TCP timestamps option carries two 4-byte timestamp fields, as

seen in the diagram:

155

Finding the root cause

• If you experience one of the following problems, use Wireshark in
order to find out what is the reason for it.

• These problems can be of many types. Of these:

– You try to run an application and it does not work. You try to browse the
Internet and you don't get any response.

– You try to use your mail but you don't have a connection to the mail
server.

– Problems can be due to simple reasons, such as the server being down,
the application is not running on the server, or the network is down
somewhere on the way to the server.

– Problems can be also due to more complicated reasons, such as DNS
problems, insufficient memory on the server that does not enable you to
connect (due to high memory consumption by an application, for
example), duplicate IPs, and many others.

• In this recipe we focus on these GO/NO-GO problems that are
usually quite easy to solve.

156

Getting ready

• Here you will see some indicators and what you can see when you

use Wireshark for debugging TCP connectivity problems. Usually

these problems result in trying to run an application and getting no

results.

• When you try to run an application, for example, a database client, a

mail client, watching cameras servers, and so on, and you don't get

any output, follow these steps: Verify that the server and

applications are running.

• Verify if your client is running, you have an IP address configured

(manually or by DHCP), and you are connected to the network.

• Ping the server and verify you have connectivity to it.

157

158

How to do it..

• In some cases, you will not have Ping to the server, but still

have connectivity to the application. This can happen because a

firewall is blocking the ICMP messages, so if you don't have

Ping to a destination it doesn't necessarily mean that something

is wrong. The firewall can be a dedicated device in the network

or a windows (or Linux/UNIX) firewall installed on the end

device.

• In the capture file, look for one of the following patterns:
– Triple SYN messages with no response (in the following screenshot)

– SYN messages with a reset (RST) response

• In both cases it can be that a firewall is blocking the specific application or the
application is not running.

• In the following screenshot, we see a simple case in which we simply don't get
access to web server 81.218.31.171 (packets 61, 62, and 63). It can be because it is
not permitted by a firewall, or simply because there is a problem with the server. We
can also see that we have a connection to another website (108.160. 163.43,
packets 65, 66, and 67), so the connection problem is only to 81.218.31.171.

159

• In the next screenshot we see a slightly more complex case of the same situation. In this
case, we've had a cameras server that the customer wanted to log in to and watch the
cameras on a remote site. The camera's server had the IP address 135.82.12.1 and the
problem was that the customer was able to get the main web page of the server with the
login window, but couldn't log into the system. In the following screenshot, we can see that
we open a connection to the IP address 135.82.12.1. We see that a TCP connection is
opened to the HTTP server, and at first it looks like there are no connectivity problems:

160

• The problems arise when we filter all traffic to the IP address 135.82.12.1, that is, the
cameras server.

• Here we see that when we try to connect to TCP port 6036, we get an RST/ACK response,
which can be:

– A firewall that blocks port 6036 (that was the case here)

– When port address translation (PAT) is configured, and we translate only port 80 and not 6036

– The authentication of the username and password were done on TCP port 6036,
the firewall allowed only port 80, the authentication was blocked, and the application didn't work

• To summarize, when you don't have connectivity to a server, check the server and the client
if all TCP/UDP ports are forwarded throughout the network, and if you have any ports that
you don't know about.

161

• Starting a TCP connection, as seen in the next
screenshot, happens in three steps:

1. The TCP process on the client side sends an SYN packet. This is a packet with the SYN flag set to 1. In this packet the
client:

– Specifies its initial sequence number. This is the
number of the first byte that the client sends to the
server.

– Specifies its window size. This is the buffer the clients
allocate to the process (the place in the client's RAM).

– Sets the options that will be used by it: MSS, Selective
ACK, and so on.

2. When the server receives the request to establish a
connection, the server:

– Sends an SYN/ACK packet to the client, confirming the
acceptance of the SYN request.

– Specifies the server's initial sequence number. This is
the number of the first byte that the server sends to the
client.

– Specifies the server's window size. This is the buffer
size that the server allocates to the process (the place
in the server's RAM).

– Responds to the options requested and sets the
options on the server side.

162

3. When receiving the server's SYN/ACK, the client:
• Sends an ACK packet to the server, confirming the

acceptance of the SYN/ ACK packet from the server.
• Specifies the client's window size. This is the buffer

size that the client allocates to the process. Although
this parameter was defined in the first packet (the
SYN packet), the server will refer to this one since it is
the latest window size received by the server.

summary

• In the options field of the TCP header, we have the following main options:
– Maximum Segment Size (MSS): This is the maximum size of the TCP datagram, that is, the

number of bytes from the beginning of the TCP header to the end of the entire packet.

– Windows Size (WSopt): This factor is multiplied with the Window Size field in the TCP
header to notify the receiver on a larger size buffer. Since the maximum window size in the
header is 64 KB, a factor of 4 gives us 64 KB multiplied by 4, that is, a 256 KB window size.

– SACK: Selective ACK is an option that enables the two parties of a connection to
acknowledge specific packets, so when a single packet is lost, only this packet will be sent
again. Both parties of the connection have to agree on SACK in the connection
establishment.

– Timestamps options (TSopt): This parameter was explained earlier in this chapter, and
refers to measurement of the delay between client and the server.

• By this stage, both sides:
– Agree to establish a connection

– Know the other side's initial sequence number

– Know the other side's window size

163

GRAPH TRAFFIC CHARACTERISTIC

• Build advanced IO graph

• Graph round trip times

• Graph TCP throughput

• Find problems using TCP Time-sequence graph

164

Tcp stream graph

• Wireshark provides TCP StreamGraphs to analyze several key data
transport metrics, including:

– Round-trip time: This graphs the RTT from a data packet to
thecorresponding ACK packet.

– Throughput: These are plots throughput in bytes per second.

– Time/sequence (Stephen's-style): This visualizes the TCP-based
packet sequence numbers (and the number of bytes transferred) over
time. An ideal graph flows from bottom-left to upper-right in a smooth
fashion.

– Time/sequence (tcptrace): This is similar to the Stephen's graph, but
provides more information. The data packets are represented with an I-
bar display, where the taller the I-bar, the more data is being sent. A
gray bar is also displayed that represents the receive window size.
When the gray bar moves closer to the I-bars, the receive window size
decreases.

– Window Scaling: This plots the receive window size.

165

Building tcp stream

graphs

• These analysis graphs can be
utilized by selecting one of the
packets in a TCP stream in
the Packet List pane and
selecting TCP StreamGraph
from the Statistics menu and
then one of the options such
as the Time-Sequence
Graph (tcptrace).

166

1. Select statistics

2. Choose TCP
Stream Graphs

3. Select the
necessary graphs

Sequence

numbers

(stevens)

167

Sequence

numbers

(tcptrace)

168

Througput

graph

169

170

171

IO graph

You can also analyze
a the effects of TCP
issues on network
throughput by
applying TCP analysis
display filter strings to
Wireshark's IO Graph,
such as:

tcp.analysis.flags &&
!tcp.analysis.window
_update

172

Anylyzing http traffic

• Next, right click on the

first pcap and choose

‘Follow’ and ‘TCP

Stream’

• Analyze and discuss

the result with your

instructor

• (see the result on the

next page)

173

174

Reassembled http packets

This is an example of how to reassemble a HTTP
stream and to extract and save to a file a JPEG
image from inside a HTTP PDU.

1. First download the example
capture SampleCaptures/http_with_jpegs.cap
.gz from the SampleCaptures page.

2. Then enable all three preferences above.

3. Then select packet #479 (ctrl+G and input
479) and click on the JPEG protocol to select
it.

4. Then just right click on the JPG protocol and
select "Export Selected Bytes" and save it to
a file. If everything worked, you will now have
a nice JPEG of the Dolphin Show at
SeaWorld in SurfersParadise to view for your
enjoyment.

175

https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=http_with_jpegs.cap.gz
https://wiki.wireshark.org/SampleCaptures

SSL/TLS Version History

176

TLS
v1.2

TLS
v1.3

1994

SSLv2

Netscape Navigator

1995

SSLv3
resolved serious v2 issues

1999

TLSv1.0
RFC 2246

2006

TLSv1.1
RFC 4346

2008

TLSv1.2
RFC 5246

2013

Microsoft/Apple
Enable support for
TLSv1.2

2018

TLSv1.3

Prop. Standard

Courtesy of Kary Rogers, Sharkfest’19 US

Analyze the

TLS-Encrypted

Traffic (HTTPS)

• Firefox and Chrome both support logging
the symmetric session key used to encrypt
TLS traffic to a file.

• For this example we will create a
SSLKEYLOG file that later will be used by
Wireshark to decrypt the encrypted traffic.

177

Choose this
Click New..

Insert
Variable

name and
value

Performing traffic decryption
1. If you want to decrypt TLS traffic, you

first need to capture it. For this reason,
it’s important to have Wireshark up and
running before beginning your Web
browsing session.

2. Before we start the capture, we should
prepare it for decrypting TLS traffic. To
do this, click on Edit → Preferences.
Select Protocols in the left-hand pane
and scroll down to TLS. At this point, you
should see something similar to the
screen on the right

3. At the bottom of this screen, there is a
field for (Pre)-Master-Secret log
filename. As shown above, you need to
set this value to the same location as the
SSLKEYLOGFILE for your browser.
When done, click OK.

178

• Now on the main screen of Wireshark, it will show a list of
possible adapters to capture from.

• Clicking on an adapter will start capturing traffic on it.

• At this point, you’re ready to create some TLS-encrypted traffic.
Go to Chrome or Firefox and browse to a site that uses HTTPS
(we used Facebook for this example). Once it’s loaded, return to
Wireshark and stop the capture (red square).

• Looking through the capture, you’ll probably see a lot of traffic.

179

Decrypted tls traffic

This is what it looks like when

you switch to the “Decrypted

SSL Data” tab. Note that we

can now see the request

information in plain-

text! Success!

180

Magic Byte

• Magic bytes are the bytes in the header of a file which identify the

file type.

• There are many common magic bytes you should become familiar

with:

– Windows Executable = \x4D \x5A –“MZ”

– *nix Executable Format = \x7F \x45 \x4C \x46 –“.ELF”

– PDF = \x25 \x50 \x44 \x46 –“%PDF”

– Flash = \x43 \x57 \x53 –“CWS”

– ZIP = \x50 \x5B \x03 \x04 –“PK..”

– JPEG (Raw) = \xFF\xD8 \xFF\xDB–“ÿØÿÛ”

– Many, many more…

181

THE END

Good luck!

182

